# ME 321: FLUID MECHANICS-I 

Dr. A.B.M. Toufique Hasan<br>Professor<br>Department of Mechanical Engineering<br>Bangladesh University of Engineering and Technology (BUET), Dhaka

Lecture-08
07/02/2024
Fluid dynamics

- Linear Momentum Equation
- Bernoulli Equation


## Bernoulli Equation

The Bernoulli equation is a momentum-based force relation. It may be interpreted as an idealized energy relation.



Fig. Differential control volume for momentum analysis of flow through a stream tube

Subjected to the following restrictions in fluid flow:
(i) Steady flow
(ii) Inviscid flow (no friction, ideal fluid flow, $\mu=0$; no viscous dissipation)
(iii) Incompressible flow (density is constant or $\mathrm{M}<0.3$ )
(iv) Irrotational flow (curl $\mathbf{V}=0$ )
(v) Flow along a streamline

## Differential Control Volume Analysis

Considering any two points in the flow field (irrotational flow), Bernoulli Equation yields:

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$



Fig. Differential control volume for momentum analysis of flow through a stream tube

## Validity of Bernoulli equation



## Static, Dynamic \& Stagnation Pressure



Fig. 3.18 Pressure probes: (a) piezometer; (b) pitot probe; (c) pitot-static probe.

$$
\begin{aligned}
& \frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
\Rightarrow & \frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}=\frac{p_{0}}{\gamma}+\frac{0^{2}}{2 g}
\end{aligned}
$$

dynamic pressure

(Incompressible flow)
Stagnation Pressure = Static pressure + Dynamic Pressure

## Stagnation Point



Stagnation points on bodies in flowing fluids.

## HGL \& EGL

EGL = Energy Grade Line

$$
\left(\frac{p}{\gamma}+\frac{V^{2}}{2 g}+z=h_{0}\right)
$$

## HGL = Hydraulic Grade Line

$$
\left(\frac{p}{\gamma}+z\right)
$$

Fig. 3.14 Hydraulic and energy grade lines for frictionless flow in a duct.


## Problem 1

Oil flows through the horizontal pipe under a pressure of 400 kPa and at a velocity of $2.5 \mathrm{~m} / \mathrm{s}$ at A . Determine the pressure in the pipe $B$ if the pressure at $C$ is 150 kPa . Neglect any elevation difference. Take $\rho=880 \mathrm{~kg} / \mathrm{m}^{3}$

Solution:
From continuity equation, (steady flow)


$$
\begin{align*}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho(\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{n}}) d A=0 \\
& \Rightarrow \int_{\mathrm{CS}} \rho(\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{n}}) d A=0 \\
& \Rightarrow-\rho A_{A} V_{A}+\rho A_{B} V_{B}+\rho A_{C} V_{C}=0 \quad \text { (A) } \\
& \Rightarrow A_{A} V_{A}=A_{B} V_{B}+A_{C} V_{C} \quad \text { Not ned } \\
& \Rightarrow \frac{\pi}{4} d_{A}^{2} V_{A}=\frac{\pi}{4} d_{B}^{2} V_{B}+\frac{\pi}{4} d_{C}^{2} V_{C} \\
& \Rightarrow \frac{\pi}{4}(0.1)^{2}(2.5)=\frac{\pi}{4}(0.075)^{2} V_{B}+\frac{\pi}{4}(0.025)^{2} V_{C} \\
& \Rightarrow 9 V_{B}+V_{C}=40 \quad(i) \\
& \hline \tag{i}
\end{align*}
$$

Not necessarily you have to start from the first relation but you have to realize that Eq. (A) is the result of the integral form of continuity equation for steady inviscid incompressible flows.

## Problem 1

Apply Bernoulli equation between point $A$ and $C$

$$
\begin{aligned}
& \frac{p_{A}}{\gamma}+\frac{V_{A}{ }^{2}}{2 g}+z_{A}=\frac{p_{C}}{\gamma}+\frac{V_{C}{ }^{2}}{2 g}+z_{C} \\
\Rightarrow & \frac{400 \times 10^{3}}{(880 \times 9.81)}+\frac{(2.5)^{2}}{2 g}+z / A=\frac{150 \times 10^{3}}{(880 \times 9.81)}+\frac{V_{C}^{2}}{2 g}+z / C \\
\Rightarrow & V_{C}=23.97 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$



Now use Eq. (i)

$$
9 V_{B}+V_{C}=40 \quad \rightarrow \quad V_{B}=1.78 \mathrm{~m} / \mathrm{s}
$$

Again apply Bernoulli equation between point $A$ and $B$

$$
\begin{aligned}
& \frac{p_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B} \\
\Rightarrow & \frac{400 \times 10^{3}}{(880 \times 9.81)}+\frac{(2.5)^{2}}{2 g}+\not /_{A}=\frac{p_{B}}{(880 \times 9.81)}+\frac{(1.78)^{2}}{2 g}+z_{C}
\end{aligned}
$$

$$
\Rightarrow p_{B}=401.4 \mathrm{kPa} \quad \text { Ans. }
$$

## Problem 2

Determine the velocity of the flow out of the vertical pipes at $A$ and $B$, if water flows into Tee at $8 \mathrm{~m} / \mathrm{s}$ and under a pressure of 40 kPa .

Solution:
From continuity equation, (steady flow)

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho(\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{n}}) d A=0 \\
& \Rightarrow \int_{\mathrm{CS}} \rho(\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{n}}) d A=0 \\
& \Rightarrow-\rho A_{C} V_{C}+\rho A_{A} V_{A}+\rho A_{B} V_{B}=0 \\
& \Rightarrow A_{C} V_{C}=A_{A} V_{A}+A_{B} V_{B} \\
& \Rightarrow \frac{\pi}{4} d_{C}^{2} V_{C}=\frac{\pi}{4} d_{A}^{2} V_{A}+\frac{\pi}{4} d_{B}^{2} V_{B} \\
& \Rightarrow \frac{\pi}{4}(0.05)^{2}(8)=\frac{\pi}{4}(0.03)^{2} V_{A}+\frac{\pi}{4}(0.03)^{2} V_{B} \\
& \Rightarrow V_{A}+V_{B}=22.22 \tag{i}
\end{align*}
$$

Not necessarily you have to start from the first relation but you have to realize that Eq is the result of the integral form of continuity equation for steady incompressible flows.


## Problem 2

Apply Bernoulli equation between point $C$ and $A$

$$
\frac{p_{C}}{\gamma}+\frac{V_{C}^{2}}{2 g}+z_{C}=\frac{p_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}
$$

$\Rightarrow \frac{40 \times 10^{3}}{(1000 \times 9.81)}+\frac{(8)^{2}}{2 g}+0=\frac{0}{(1000 \times 9.81)}+\frac{V_{A}^{2}}{2 g}-3 \quad ; p_{A}=p_{B}=0$ (open discharge)
$\Rightarrow V_{A}=14.24 \mathrm{~m} / \mathrm{s} \quad$ Ans.

Now use Eq. (i)


$$
V_{A}+V_{B}=22.22 \quad \rightarrow \quad V_{B}=7.98 \mathrm{~m} / \mathrm{s}
$$

Ans.

## Problem 3

In Fig. below, the fluid is gasoline at $20^{\circ} \mathrm{C}(\mathrm{SG}=0.68)$. It flows at a weight flux of $120 \mathrm{~N} / \mathrm{s}$. Assuming no losses, estimate the gage pressure at section 1.


[^0]
## Problem 4

Determine the difference in height $h$ of the water column in the manometer if the flow of oil through the pipe is $0.04 \mathrm{~m}^{3} / \mathrm{s}$. Take $\rho_{\text {oil }}=875 \mathrm{~kg} / \mathrm{m}^{3}$


Solution:
From continuity equation, (steady flow)

$$
\begin{aligned}
& Q=A_{A} V_{A}=0.04 \mathrm{~m}^{3} / \mathrm{s} \\
\therefore & V_{A}=\frac{0.04}{\frac{\pi}{4} d_{A}^{2}}=\frac{0.04}{\frac{\pi}{4}(0.3)^{2}}=0.57 \mathrm{~m} / \mathrm{s} \\
& B \text { is the stagnation point } \therefore V_{B}=0
\end{aligned}
$$

## Problem 4

Apply Bernoulli equation between point $A$ and $B$

$$
\begin{align*}
& \frac{p_{A}}{\gamma_{o i l}}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{p_{B}}{\gamma_{o i l}}+\frac{V_{B}^{2}}{2 g}+z_{B} \\
\Rightarrow & \frac{p_{A}}{\gamma_{o i l}}+\frac{(0.57)^{2}}{2 g}+\not /_{A}=\frac{p_{B}}{\gamma_{o i l}}+\frac{0^{2}}{2 g}+z / B \\
\Rightarrow & p_{B}-p_{A}=\frac{(0.57)^{2}}{2 g} \gamma_{\text {oil }} \\
\Rightarrow & p_{B}-p_{A}=\frac{(0.57)^{2}}{2 g}\left(\rho_{\text {oil }} g\right) \\
\Rightarrow & p_{B}-p_{A}=\frac{(0.57)^{2}}{2}(875) \\
\Rightarrow & p_{B}-p_{A}=142.1 \tag{i}
\end{align*}
$$

## Problem 4

From principle of manometry (fluid statics)

$$
\begin{aligned}
& p_{A}+\rho_{\text {oil }} g h_{A C}+\rho_{\text {water }} g h_{C D}=p_{B}+\rho_{\text {oil }} g h_{B D} \\
\Rightarrow & p_{A}+(875)(9.81) a+(1000)(9.81) h=p_{B}+(875)(9.81)(a+h) \\
\Rightarrow & p_{B}-p_{A}=1226.25 h \\
\Rightarrow & 142.1=1226.25 h \quad \text { From Eq. (i): } \Rightarrow p_{B}-p_{A}=142.1 \\
\Rightarrow & h=0.116 \mathrm{~m} \\
\therefore & h=116 \mathrm{~mm} \quad \text { Ans. }
\end{aligned}
$$



## Problem 5

Find the velocity $V_{1}$ of the water in the vertical pipe shown in Fig. Assume no losses.


Ans: $V_{1}=9.94 \mathrm{~m} / \mathrm{s}$

## Problem 6

Determine the volumetric flow rate of water and the pressure in the pipe at $A$ if the height of the water column in the Pitot tube is 0.3 m and the height in the piezometer is 0.1 m .

## Solution:



Use continuity equation between points $A$ and $B$

$$
V_{A}=9 V_{B}
$$

Calculate pressure at $B$
Calculate stagnation pressure at C

$$
\begin{array}{|c|}
\hline p_{B}=1.71675\left(10^{3}\right) \mathrm{Pa} \\
\hline \hline p_{C}=2.943\left(10^{3}\right) \mathrm{Pa} \\
\hline
\end{array}
$$

Use Bernoulli equation between points $\mathbf{A}$ and $\mathbf{C}$

$$
\begin{aligned}
& \hline p_{A}+500 V_{A}^{2}=2.943\left(10^{3}\right) \\
& \hline \hline V_{B}=1.566 \mathrm{~m} / \mathrm{s} \\
& \hline
\end{aligned}
$$

$$
Q=A_{A} V_{A}=A_{B} V_{B}
$$

Ans.

$$
\begin{aligned}
& p_{A}=-96.4 \mathrm{kPa} \\
& Q=0.0277 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

## Real flow system

Modification of Bernoulli Equation is a must for real flow system:
Real flow system must account for loss of energy, which is frequently known as head loss.

1) Major loss (due to viscous effect/fluid friction/viscosity)
2) Minor loss (due to different pipe fittings, etc.)

Modified Bernoulli relation comes as:

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{L}
$$

(1) is the upstream point and
(2) is the downstream point

$$
h_{L}=\text { head loss }
$$

## Problem 7

The liquid in the figure below is kerosene ( $\mathrm{SG}=0.8$ ). Estimate the flow rate from the tank for
(a) No losses and
(b) Pipe losses $h_{L} \approx 4.5 \frac{V^{2}}{2 g}$

## Solution:

(a) $\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}$

$$
\begin{aligned}
& \Rightarrow \frac{140 \times 10^{3}}{\gamma}+\frac{0^{2}}{2 g}+1.5=\frac{101.3 \times 10^{3}}{\gamma}+\frac{V_{2}^{2}}{2 g}+0 \\
& \Rightarrow V_{2}= \\
& \therefore Q=A V=?
\end{aligned}
$$

(b) $\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{L}$
$\Rightarrow \frac{140 \times 10^{3}}{\gamma}+\frac{0^{2}}{2 g}+1.5=\frac{101.3 \times 10^{3}}{\gamma}+\frac{V_{2}^{2}}{2 g}+0+4.5 \frac{V_{2}^{2}}{2 g}$
$\Rightarrow V_{2}=\quad(\equiv V)$
$\therefore Q=A V=$ ?



[^0]:    Ans: $p_{1}=104.3 \mathrm{kPa}$

